NMDA receptor subunit composition controls synaptogenesis and synapse stabilization.
نویسندگان
چکیده
During early postnatal development in the rat hippocampus, synaptogenesis occurs in parallel with a developmental switch in the subunit composition of NMDA receptors from NR2B to NR2A. It is unclear how this switch affects the process of synaptogenesis, synapse maturation, and synapse stabilization. We investigated the role of NR2 subunits in synaptogenesis during the period in which expression and synaptic incorporation of the NR2A protein begins through the time when it reaches adult levels. We found that early expression of NR2A in organotypic hippocampal slices reduces the number of synapses and the volume and dynamics of spines. In contrast, overexpression of NR2B does not affect the normal number and growth of synapses; however, it does increase spine motility, adding and retracting spines at a higher rate. The C terminus of NR2B, and specifically its ability to bind CaMKII, is sufficient to allow proper synapse formation and maturation. Conversely, the C terminus of NR2A was sufficient to stop the development of synapse number and spine growth. Our results indicate that the ratio of synaptic NR2B over NR2A controls spine motility and synaptogenesis, and suggest a structural role for the intracellular C terminus of NR2 in recruiting the signaling and scaffolding molecules necessary for proper synaptogenesis.
منابع مشابه
Distinct Modes of AMPA Receptor Suppression at Developing Synapses by GluN2A and GluN2B: Single-Cell NMDA Receptor Subunit Deletion In Vivo
During development there is an activity-dependent switch in synaptic N-Methyl-D-aspartate (NMDA) receptor subunit composition from predominantly GluN2B to GluN2A, though the precise role of this switch remains unknown. By deleting GluN2 subunits in single neurons during synaptogenesis, we find that both GluN2B and GluN2A suppress AMPA receptor expression, albeit by distinct means. Similar to Gl...
متن کاملRedistribution and stabilization of cell surface glutamate receptors during synapse formation.
Although the regulation of neurotransmitter receptors during synaptogenesis has been studied extensively at the neuromuscular junction, little is known about the control of excitatory neurotransmitter receptors during synapse formation in central neurons. Using antibodies against extracellular N-terminal (N-GluR1) and intracellular C-terminal (C-GluR1) domains of the AMPA receptor subunit GluR1...
متن کاملDistinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability.
NMDA-type glutamate receptors (NMDARs) play a central role in the rapid regulation of synaptic transmission, but their contribution to the long-term stabilization of glutamatergic synapses is unknown. We find that, in hippocampal pyramidal neurons in rat organotypic slices, pharmacological blockade of NMDARs does not affect synapse formation and dendritic spine growth but does increase the moti...
متن کاملDistribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons.
Postsynaptic differentiation during glutamatergic synapse formation is poorly understood. Using a novel biophysical approach, we have investigated the distribution and density of functional glutamate receptors and characterized their clustering during synaptogenesis in cultured hippocampal neurons. We found that functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA) and N-methyl-...
متن کاملModulation of NMDA receptor function: implications for vertebrate neural development.
The NMDA subtype of glutamate receptor is hypothesized to mediate synaptic competition in the developing brain by stabilizing converging synapses that have correlated activity patterns. Disruption of NMDA receptor function during development interferes with synapse elimination and sensory map formation. Moreover, many studies indicate that NMDA receptor function is high during times of synaptic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 14 شماره
صفحات -
تاریخ انتشار 2011